ISSN: 1003-6326
CN: 43-1239/TG
CODEN: TNMCEW

Vol. 18    No. 3    June 2008

[PDF]    
Numerical calculation of magnetization behavior for Co nanowire array
ZHONG Ke-hua(钟克华), HUANG Zhi-gao(黄志高), CHEN Zhi-gao(陈志高),FENG Qian(冯 倩), YANG Yan-min(杨艳敏)
(Department of Physics, Fujian Normal University, Fuzhou 350007, China)
Abstract: Based on Monte Carlo method, the hysteresis loops for both individual Co nanowires and their array were simulated, and the influence of the strength of the dipolar interaction on the macroscopical magnetic properties of Co nanowire array was investigated. The simulated results indicate that the coercivity approximately increases linearly with the increase of the strength coefficient of the dipolar interaction. The interwire dipole interaction between wires tends to develop a magnetic easy axis perpendicular to the wire axis. In the magnetic reversal process, competition between the interwire dipolar interaction and the shape anisotropy of individual wires which forces the moments to orient along the axis makes the magnetic reversal of the array different from that of individual wire. For applied field parallel to wire axis, the coercivity of nanowire array increases rapidly with the increase of the nearest-neighbor interwire distance, and approximately increases linearly with the increase of the strength coefficient of the dipolar interaction for the fixed diameter and the nearest-neighbor interwire distance. While for applied field perpendicular to wire axis, in contrast, the coercivity decreases with increasing the nearest-neighbor interwire distance, and nearly remains a constant with the increase of the strength coefficient of the dipolar interaction.
Key words: Co nanowires; interwire dipole interaction; Monte Carlo method
Superintended by The China Association for Science and Technology (CAST)
Sponsored by The Nonferrous Metals Society of China (NFSOC)
Managed by Central South University (CSU) 湘ICP备09001153号-9